
AP Calc AB Limits, Continuity, Derivative Test Review

$$\lim_{x \to \infty} f(x) =$$

1.
$$\lim_{x \to -3^+} f(x) =$$
 2. $\lim_{x \to -3^-} f(x) =$ 3. $\lim_{x \to -3} f(x) =$ 4. $f(-3) =$

$$3. \lim_{x \to -3} f(x) =$$

4.
$$f(-3) =$$

5.
$$\lim_{x \to 2^+} f(x) =$$
 6. $\lim_{x \to 2^-} f(x) =$ 7. $\lim_{x \to 2} f(x) =$ 8. $f(2) =$

6.
$$\lim_{x \to 2^{-}} f(x) =$$

7.
$$\lim_{x \to 0} f(x) =$$

8.
$$f(2) =$$

9.
$$\lim_{x \to 5^+} f(x) = 10$$
. $\lim_{x \to 5^-} f(x) = 11$. $\lim_{x \to 5} f(x) = 12$. $f(5) = 12$

10.
$$\lim_{x \to 0} f(x) =$$

11.
$$\lim_{x \to a} f(x) =$$

12.
$$f(5) =$$

Find the indicated limit:

13.
$$\lim_{x \to 2} \frac{x^2 - 4}{x + 5} =$$

14.
$$\lim_{x \to -4} |x - 7| + 2 =$$

14.
$$\lim_{x \to -4} |x - 7| + 2 =$$
 15 $\lim_{x \to 3} \frac{\frac{1}{x} - \frac{2}{3}}{x + 3} =$

16.
$$\lim_{x \to -7} \frac{x^2 + 3x - 28}{x + 7} = 17$$
. $\lim_{x \to 36} \frac{\sqrt{x - 6}}{x - 36} = 18$. $\lim_{x \to -5} \frac{\sqrt{x + 5}}{2x + 10} = 18$

17.
$$\lim_{x \to 36} \frac{\sqrt{x-6}}{x-36} =$$

18.
$$\lim_{x \to -5} \frac{\sqrt{x+5}}{2x+10} =$$

19.
$$\lim_{x \to -2^+} \frac{\frac{1}{x} + \frac{1}{2}}{x + 2} =$$
 20. $\lim_{x \to 7} [x - 3] =$ 21. $\lim_{x \to 0} \frac{1}{x \csc x} =$

20.
$$\lim_{x \to 7} (x - 3) =$$

$$21. \lim_{x \to 0} \frac{1}{x \csc x} =$$

22.
$$\lim_{x \to 2^{-}} \frac{x^2 + 11x + 18}{x - 2} = 23$$
. $\lim_{x \to 4^{-}} \frac{x^3 - 4x}{x^2 - 16} = 24$. $\lim_{x \to \infty} \frac{3x - 15}{x^2 - 25} = 24$

23.
$$\lim_{x \to -4^{-}} \frac{x^3 - 4x}{x^2 - 16} =$$

24.
$$\lim_{x \to \infty} \frac{3x - 15}{x^2 - 25} =$$

25.
$$\lim_{x \to -\infty} \frac{x^2 - 8x + 15}{3x + 15} =$$

25.
$$\lim_{x \to -\infty} \frac{x^2 - 8x + 15}{3x + 15} = 26. \lim_{x \to \infty} \frac{-3x^2 + 7x - 18}{x^2 - 4} =$$

- 27. For which x value does $y = \frac{x^3 27}{x^2 + 5x 24}$ have a vertical asymptote?
- 28. For which x value does $y = \frac{2x^2 11x 21}{2x^2 + 13x + 15}$ have point discontinuity?
- 29. For which x value does $y = \frac{|x-5|}{x-5}$ have a jump discontinuity?
- 30. For which x value does $y = \frac{x+3}{x^2+2x-3}$ have an infinite discontinuity?
- 31. Find the values that make f(x) continuous. Justify your answer.

$$f(x) = \begin{cases} \sqrt{x+3} & x < -2\\ ax^2 - 7 & x \ge -2 \end{cases}$$

32. Find the values that make f(x) continuous. Justify your answer.

$$f(x) = \begin{cases} 7x + 25 & x < -1 \\ \alpha x^2 + b & -1 \le x < 3 \\ \log_x 9 & x \ge 3 \end{cases}$$

33. Use the limit definition of a derivative to find the following:

$$f(x) = 2x^2 - 7x + 1$$

A. Find $f'(x) =$

b. Find
$$f'(3) =$$

c. Find
$$f'(-2) =$$

- 34. Describe what the derivative of a function is as it relates to the graph of the function.
- 35. Use the alternate form of the limit definition to find $f'(4) = if f(x) = -x^2 5x$.
- 36. Find the equation of the line tangent to the curve $f(x) = -2x^2 3x$ at x = 2.
- 37. Find the equation of the line orthogonal to the curve $f(x) = \frac{6}{x}$ at x = 3.

38. Does the function $f(x) = x^4 - 5x^2 + 2$ have a root in the interval [2, 3]?

39. If
$$f(x) = x^2 - \sqrt{x+2}$$
, show there is a number c such that $f(c) = 7$.

The functions f and g are differentiable for all real numbers, and f is strictly increasing. The table below gives values of the functions and their first derivatives at selected values of x. The function h is given by h(x) = g(f(x)) + 4.

x	f(x).	f '(x)	g(x)	g'(x)
2	2	1	4	6
4	3	4	9	1
6	8	8	-3	4
8	14	11	2	-3

40. Explain why there must be a value r for 2 < r < 6 such that h(r) = 7

41. Find the equation of the line normal to f(x) at x = 4

42. Find the equation of the line tangent to g(x) at x = 8

43. Explain why there must be a point where the graph of g has a horizontal tangent line.

44. Sketch a possible graph for f(x) given the following criteria.

$$\lim f(x) = 4$$

$$\lim_{x \to \infty} f(x) = 4 \qquad \qquad \lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to 2^{-}} f(x) = \infty$$

$$\lim_{x \to 2^{-}} f(x) = \infty \qquad \qquad \lim_{x \to 2^{+}} f(x) = -\infty$$

$$\lim_{x \to 0} f(x) = 2$$

$$\lim_{x \to 5} f(x) = 2 \qquad \lim_{x \to -3^{-}} f(x) = -1 \qquad \lim_{x \to -3^{+}} f(x) = 3 \qquad f(-3) = 5$$

$$\lim_{x \to -3^+} f(x) = 3$$

$$f(-3) = 5$$

$$f(-7) = 1$$

$$f(5)$$
 is undefined